Author:
Momayezi M,Kersken H,Gras U,Vilmart-Seuwen J,Plattner H
Abstract
Monospecific polyclonal antibodies against Paramecium tetraurelia calmodulin were prepared and labeled for calmodulin localization on different levels of resolution: by microinjection into living cells; with isolated cell surface complexes (cortices); on the ultrastructural level, using Lowicryl sections of non-permeabilized cells (with colloidal gold-protein A labeling of antibodies bound); or using permeabilized and gently fixed cells for incubation with peroxidase- or microperoxidase-tagged antibodies. Sites selectively labeled above cytoplasmic background largely coincided, irrespective of the method used, although sensitivity, resolution, and liability to redistribution of antigen were quite different. (The methodological diversification applied allowed for their mutual control.) Nonspecific binding can be largely excluded, since all these methods gave negative results with pre-immune sera. We reached the following conclusions on sites with selective calmodulin binding (above cytoplasmic background level) in P. tetraurelia cells. A pool of calmodulin co-localized with F-actin, not only in the cortex (including fibrous materials around ciliary basal bodies) but also around food vacuoles (phagosomes) and, to a lesser degree, around the buccal cavity. Trichocyst docking sites on the cell membrane, and coated pits also displayed calmodulin labeling, thus indicating the potential involvement of calmodulin in exo-endocytosis processes. Calmodulin was also enriched on membranes of compartments with presumable ion (possibly Ca2+) transport capacity, such as trichocysts and the osmoregulatory system. Not selectively labeled were nuclei, mitochondria, and some small lysosomal organelles (as identified in vivo by rhodamine 123 or acridine orange fluorescence, respectively).
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献