Investigation of Some Gaseous and Trace Metal Emissions With Their Emission Factors From Various Brands of Mosquito Coils Used in Nigeria

Author:

Elehinafe Francis B1ORCID,Okedere Oyetunji B2,Oladimeji Temitayo E1,Anabui Sarah O1

Affiliation:

1. Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria

2. Department of Chemical Engineering, Faculty of Engineering, Osun State University, Osogbo, Osun State, Nigeria

Abstract

Mosquito coils of various brands are frequently burnt in indoor environments to drive away mosquitoes—the vector for malaria parasite in regions where the disease is endemic. Emissions from the coils could be a source of indoor air pollution. In this study, various brands of mosquito coils obtained from retail shops in Lagos, Nigeria were burnt in an environmental test box with a view to characterizing carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2) in the gaseous emissions as well as elemental concentrations of the ash. Emission characterization achieved with the RAS1700 bio-gas analyzer while AAS was adopted for elemental analysis of the mosquito coil ashes. The emission factor of CO, NO and NO2 from the coil samples ranged between 0.00138 to 0.26277 μg/m3, 0.0002 to 0.00454 μg/m3, and 0.000074 to 0.00714 μg/m3, respectively. These values were found to be lower than permissible indoor levels recommended by NIOSH. The range of concentrations of Pb, Zn, Cd, Cr, Cu, As, Hg, Fe in the coil ashes from all the brands were 0.02 to 0.04 mg/g, 0.011 to 0.02 mg/g, 0.001 to 0.003 mg/g, 0.004 to 0.008 mg/g, 0.004 to 0.006 mg/g, 0.0001 to 0.0004 mg/g, 0.001 to 0.003 mg/g, and 0.124 to 0.14 mg/g, respectively. Although, the concentrations of the pollutants obtained in this study are within the recommended limits, prolong exposure could trigger chronic disease conditions. Adequate ventilation of indoor environments or utilization of mosquito nets in place of coils could be considered.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3