Seasonal Indoor Radon Assessment and Estimation of Cancer Risk: A Case Study of Obafemi Awolowo University Nigeria

Author:

Esan Deborah Tolulope1,Ajiboye Yinka2,Obed Rachel3,Olubodun Babakayode Babajide4,Tobih James Enajero5

Affiliation:

1. Faculty of Nursing Sciences, College of Health Sciences, Bowen University Iwo, Nigeria

2. Department of Mathematical and Physical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria

3. Department of Physics, University of Ibadan, Ibadan, Nigeria

4. Department of Geology, Obafemi Awolowo University, Ile-Ife, Nigeria

5. Deparment of Otorhinolaryngology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Abstract

Human exposure to indoor radon has been a subject of continuous concern due to its health implications, especially as it relates to lung cancer. Radon contaminates indoor air quality and poses a significant health threat if not abated/controlled. A seasonal indoor radon assessment of residential buildings of Obafemi Awolowo University was carried out to determine radon seasonal variability and to evaluate the cancer risk to the residents. AT-100 diffusion-based track detectors were deployed within living rooms and bedrooms for the radon measurement. During the rainy season, the average indoor radon concentration was 18.4 ± 10.1 Bq/m3, with higher concentrations observed in bedrooms compared to living rooms, whereas the average radon concentration was 19.0 ± 4.4 Bq/m3 in the dry season, with similar radon levels in living rooms and bedrooms. The potential alpha energy concentration values ranged from 1.62 to 7.57 mWL. The annual effective dose equivalent values were below the world average and recommended limits for public exposure. Of the three geological units underlying the residences, the buildings overlying the granite gneiss lithology have the highest radon concentrations with average value of 21.4 Bq/m3. The soil gas radon concentration to indoor radon concentration ratio over the granite gneiss lithology is 0.006. The estimated average lifetime cancer risk due to radon inhalation in the residences indicated a potential risk of cancer development in 178 persons in 100 000 population over a lifetime period. The average indoor radon concentrations were below the recommended limit, requiring no immediate remediation measures. Improved ventilation of residential apartments is recommended to minimize residents’ risk to indoor radon.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3