Potential Effectiveness of Point-of-Use Filtration to Address Risks to Drinking Water in the United States

Author:

Brown Kathleen Ward1,Gessesse Bemnet1,Butler Lindsey J2,MacIntosh David L13

Affiliation:

1. Environmental Health & Engineering Inc., Needham, MA, USA

2. Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA

3. Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Abstract

Numerous contemporary incidents demonstrate that conventional control strategies for municipal tap water have limited ability to mitigate exposures to chemicals whose sources are within distribution systems, such as lead, and chemicals that are not removed by standard treatment technologies, such as perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS). In these situations, point-of-use (POU) controls may be effective in mitigating exposures and managing health risks of chemicals in drinking water, but their potential utility has not been extensively examined. As an initial effort to fill this information gap, we conducted a critical review and analysis of the existing literature and data on the effectiveness of POU drinking water treatment technologies for reducing chemical contaminants commonly found in tap water in the United States. We found that many types of water treatment devices available to consumers in the United States have undergone laboratory testing and often certification for removal of chemical contaminants in tap water, but in most cases their efficacy in actual use has yet to be well characterized. In addition, the few studies of POU devices while “in use” focus on traditional contaminants regulated under the Safe Drinking Water Act, but do not generally consider nontraditional contaminants of concern, such as certain novel human carcinogens, industrial chemicals, pesticides, pharmaceuticals, personal care products, and flame retardants. Nevertheless, the limited information available at present suggests that POU devices can be highly effective when used prophylactically and when deployed in response to contamination incidents. Based on these findings, we identify future areas of research for assessing the ability of POU filters to reduce health-related chemical contaminants distributed through public water systems and private wells.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3