Tribology analysis of MMT nanoclay alkali-treated coconut sheath reinforced hybrid composite

Author:

Ganapathy Srinivasan R1,Pragadish N2ORCID,Esakkiraj ES3ORCID,Selvam M1,Rajaravi C4

Affiliation:

1. Department of Mechanical Engineering, Vel Tech Multitech Dr Rangarajan Dr Sakunthala Engineering College, Chennai, TN, India

2. Department of Mechatronics Engineering, Chennai Institute of Technology, Chennai, TN, India

3. Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia

4. Department of Mechanical Engineering, Hindhusthan College of Engineering and Technology, Coimbatore, TN, India

Abstract

This research paper focuses on the tribology analysis of MMT - Montmorillonite nanoclay alkali-treated coconut sheath reinforced hybrid composite. The study aims to analyze the mechanical properties of coconut sheath reinforced polymer composites as compared to traditional synthetic fibers. The specific impact of MMT clay on the material’s mechanical properties is also considered. The experimental method involves the use of compression molding for fabrication, and various treatments are applied to the coconut sheath to improve its mechanical properties. The microstructure, tensile, flexural, and impact characterization of the specimens are analyzed. The results indicate that alkali-treated coconut sheath outperforms untreated coconut sheath in terms of surface quality. Additionally, the addition of MMT clay improves the bonding and surface area coverage, resulting in better mechanical properties. However, the brittleness of the treated coconut sheath specimen increased, reducing its energy absorption in impact tests. Overall, the study highlights the potential of coconut sheath as a natural fiber reinforcement for polymer composites and the impact of MMT clay on its mechanical properties.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3