Numerical study on the tensile properties of a cylindrical specimen with chopped basalt fibre thermosetting resin matrix composites

Author:

Li Hengzhe1ORCID,Yuan Haiping12ORCID,Zuo Xiaohan1,Huang Jingting3,Zou Yangyao1,Pan Luyang1,Gu Ziang1

Affiliation:

1. College of Civil Engineering, Hefei University of Technology, Hefei, China

2. State Key Laboratory of Mining∼Induced Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, China

3. School of Urban Construction and Transportation, Hefei University, Hefei, China

Abstract

For several decades, the disadvantages of traditional metallic rock and soil support structures have become increasingly prominent. As a result, it is urgent to seek lightweight, high-strength, durable and green economic substitute products made from the basalt fibre reinforced composites. Combining the two-phase material summing principle of composite material mechanics and the extension and application of Mohr–Coulomb strength criterion, the uniaxial tensile computing model of a cylindrical polymer specimen containing randomly distributed and discontinuous basalt fibres was established in accordance with the numerical simulation software Flac3D. Furthermore, the influence laws and intrinsic mechanism of the number of discrete fibres and different fibre distribution angles on the integral axial tensile properties of a cylindrical specimen with chopped basalt fibre thermosetting resin matrix composites were investigated and elucidated, and the stress–strain curve of basalt fibre thermosetting resin matrix composites were obtained. Consequently, the results have indicated that: i) the axial tensile strength of the polymer system can be enhanced through the incorporation of a moderate quantity of chopped fibres, with the resultant improvement typically not surpassing a 10% increment; ii) when the number of fibres has increased to the quantitative state, namely, the fibre density reaches 1.02 pieces/cm3 or more, the amplification of axial tensile strength of composite material will be controlled; iii) the fibre distribution directions, are maintaining a 0° parallel state to the axial direction of the specimen and the ones of load application, will ensure that the tensile strength of the composite can be sufficiently utilized. As the production process within the composite industry have become increasingly adept, the research results hold substantial value for further promoting the development, testing and optimizing application of various types of high-performance basalt fibre reinforced composite products.

Funder

State Key Laboratory Open Funding Project of Mining∼Induced Response and Disaster Prevention and Control in Deep Coal Mines

University Natural Sciences Research Project of Anhui Province

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3