The researches concern the influence of the helix angle on the composite machining process

Author:

Jiang Rongsheng1,Wang Jinxin1,Gao Yu1,Zhu Zhaolong2,Cao Pingxiang1ORCID

Affiliation:

1. College of Material Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China

2. College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, Jiangsu, China

Abstract

Magnesium oxide-reinforced wood fiber composites (MgO/WF) are a new type of multifunctional material, which can be used in different occasions, such as shopping malls, hotels, and residential buildings. Referring to the relevant literature, there is no research on the milling performance of MgO/WF. In order to better understand the relevant knowledge of the processability of MgO/WF, three cutters with different helix angles were used in this experiment to carry out the cutting of MgO/WF, and the variation trend of its cutting force, tool wear, and surface roughness was measured. The results are as follows: First, under the same cutting parameters, the resultant force decreases with the increase of helix angle. Second, with the increase of helix angle, the tool wear was slightly improved. Third, the surface roughness (Ra) showed an increasing trend with the decrease of helix angle. In the end, when milling MgO/WF, better machined surface quality and less tool wear can be obtained by selecting the tool with larger helix angle.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3