Synthesis of glycine-mediated CuO–Fe2O3–MgO nanocomposites: Structural, optical, and antibacterial properties

Author:

Alnahari Hisham1,Al-Sharabi Annas2,Al-Hammadi AH1,Al-Odayni Abdel-Basit34ORCID,Alnehia Adnan12

Affiliation:

1. Department of Physics, Faculty of Sciences, Sana’a University, Sana’a, Yemen

2. Department of Physics, Faculty of Applied Sciences, Thamar University, Dhamar, Yemen

3. Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia

4. Department of Chemistry, Faculty of Education, Thamar University, Dhamar, Yemen

Abstract

Multi-phase metal oxides nanocomposites (NCs) have attracted considerable attention due to their extraordinary properties and novel applications over monometallic ones. Hence, trimetallic oxides nanoparticles (NPs) are preferred because of their immensely improved optical, catalytic, and biological properties, but few materials have been reported. Besides, glycine is an excellent structure-directing agent for NPs production with tailored physicochemical properties. Thus, in this work, a novel tri-phase CuO–Fe2O3–MgO (1:1:1) NCs was prepared via a sol-gel method in the presence of glycine as a fuel. The obtained NCs were characterized by Fourier transmission infrared, X-ray diffraction (XRD), Scanning electron micrographs, and UV-Vis. The XRD analysis emphasized the formation of NCs with monoclinic CuO, cubic MgO, hexagonal Fe2O3, and tetragonal CuFe2O4 crystals. The average crystallite size (D) was in the order of 10th of nm as computed by Scherrer method, with ternary phase seemingly affect the straightforward influence of glycine fuel concentration on the final crystallite sizes. UV-Vis analysis indicates two optical energy bandgaps which increased as glycine concentration increase. The antibacterial test against Staphylococcus aureus and Escherichia coli bacteria revealed comparable activity to that of Azithromycin standard drug, which increased with glycine concentration increase. The glycine-based tailored structural, optical, and biological properties of such trimetallic NCs making them of considerable candidate for certain applications development, possibly electronics and antibiotics; a case that encourage further investigations.

Funder

Deanship of Scientific Research, King Saud University

Publisher

SAGE Publications

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3