Fast Fourier transform method in peridynamic micromechanics of composites

Author:

Buryachenko Valeriy A1ORCID

Affiliation:

1. Micromechanics and Composites LLC, Cincinnati, OH, USA

Abstract

We consider a static linear bond–based peridynamic (proposed by Silling, see J. Mech. Phys. Solids 2000; 48:175–209) composite materials (CMs) of a periodic structure. In the framework of the second background of micromechanics (also called computational analytical micromechanics), one proved that local micromechanics (LM) and peridynamic micromechanics (PM) are formally analogous to each other for CM of both random and periodic structures. It allows a straightforward generalization of LM methods (including fast Fourier transform, FFT) to their PM counterparts. So, in the PM counterpart of the implicit periodic Lippmann–Schwinger (L-S) equation in LM, we have three convolution kernels corresponding to the properties of the matrix, inclusions, and interactive interface. Eshelby tensor in LM, depending on the inclusion shape, is replaced by PM counterparts depending on the shapes of inclusions, and the interaction interface (although the Eshelby concept of homogeneous eigenfields does not work in PM). The mentioned tensors are estimated once (as in LM) in a frequency domain (also by the FFT method). The possible incorrectness of FFT applications to PM is analyzed and corrected. The polarization schemes of the solution of the L-S equation in the Fourier space have one primary unknown variable (polarization), whereas the PM counterpart contains three primary ones estimated at each step, which are formally similar to the LM case. A description of the generalized basic scheme and the Krylov approach is presented. Computational complexities O(N log2 N) of the FFT methods are the same in both LM and PM.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peridynamic Micromechanics of Composites: A Review;Journal of Peridynamics and Nonlocal Modeling;2024-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3