The analysis and computation on nonlocal thermoelastic problems of blend composites via enriched second-order multi-scale computational method

Author:

Dong Hao1ORCID,Nie Yufeng2,Ma Ruyun1,Han Yaochuang3

Affiliation:

1. School of Mathematics and Statistics, Xidian University, Xi’an, P.R. China

2. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, P.R. China

3. School of Mathematical Sciences, Luoyang Normal University, Luoyang, P.R. China

Abstract

This paper proposes an innovative enriched second-order multi-scale (SOMS) computational method to simulate and analyze the nonlocal thermoelastic problems of blend composites with stress and heat flux gradient behaviors. The multiple periodical heterogeneities and periodic configurations of investigated blend composites in different substructures result in a huge computational cost for direct numerical simulations. The significant characteristics of this study are as follows. (1) The nonlocal properties of blend composites in constitutive equations are converted into the source terms of thermoelastic balance equations. The novel macro-micro coupled SOMS computational model for these transformed nonlocal multi-scale problems is derived on the basis of multi-scale asymptotic analysis. The nonlocal thermoelastic behaviors of blend composites can be merely uncovered in the enriched SOMS solutions. (2) The error analysis in the pointwise sense is presented to elucidate the importance and necessity of establishing the enriched SOMS solutions. Furthermore, an explicit error estimate for the SOMS approximate solutions is obtained in the integral sense for these nonlocal multi-scale problems. (3) A multi-scale numerical algorithm is presented to effectively simulate nonlocal thermoelastic problems of blend composites based on finite element method (FEM). Finally, the capability of the proposed enriched SOMS computational method is demonstrated by typical two-dimensional (2D) and three-dimensional (3D) blend composites, presenting not only the excellent numerical accuracy but also the less computational cost. This work proposes a unified multi-scale computational framework for enabling nonlocal thermoelastic behavior analysis of blend composites.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3