Affiliation:
1. Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
Abstract
A nonlinear small-strain elastic theory is constructed from a systematic expansion in Biot strains, truncated at quadratic order. The primary motivation is the desire for a clean separation between stretching and bending energies for shells, which appears to arise only from reduction of a bulk energy of this type. An approximation of isotropic invariants, bypassing the solution of a quartic equation or computation of tensor square roots, allows stretches, rotations, stresses, and balance laws to be written in terms of derivatives of position. Two-field formulations are also presented. Extensions to anisotropic theories are briefly discussed.
Funder
Division of Civil, Mechanical and Manufacturing Innovation
Subject
Mechanics of Materials,General Materials Science,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献