Volumetric-Distortional Decomposition of Deformation and Elasticity Tensor

Author:

Federico Salvatore1

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N1N4, Canada

Abstract

The deformation gradient admits a multiplicative decomposition into a purely volumetric component and a purely distortional component. For a hyperelastic material, based on this decomposition, the elastic strain energy potential, the stress, and the elasticity tensor can be expressed in general as a function of both the volumetric deformation and the distortional deformation. However, the volumetric—distortional decomposition of deformation has often been employed in a fully decoupled form of the elastic strain energy potential, which is expressed as the sum of a term depending solely on the volumetric deformation and a term depending solely on the distortional deformation. This work has three main objectives. First, to derive the elasticity tensor in the general (non-decoupled) case, in its material, spatial, and linear forms; this is achieved by extensive use of fourth-order tensor algebra, and in particular of the properties of the so-called spherical operator, which is largely used, but very seldom given the dignity of being assigned a symbol and a name, in the literature. Second, to show that a fully decoupled potential gives rise to an elasticity tensor which may be inconsistent with its linearized counterpart, as some components of the linear elasticity tensor in general do not have a corresponding term in nonlinear decoupled elasticity tensor. Third, to obtain the conditions under which a purely hydrostatic stress causes a purely volumetric deformation, by means of the developed theory; the results show that this condition is satisfied if and only if the elastic potential is fully decoupled. While the whole approach is completely independent of the material symmetry, the cases of isotropy and transverse isotropy are shown as an example.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3