Riemann–Cartan geometry of nonlinear disclination mechanics

Author:

Yavari Arash1,Goriely Alain2

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

2. OCCAM, Mathematical Institute, University of Oxford, Oxford, UK

Abstract

In the continuous theory of defects in nonlinear elastic solids, it is known that a distribution of disclinations leads, in general, to a non-trivial residual stress field. To study this problem, we consider the particular case of determining the residual stress field of a cylindrically symmetric distribution of parallel wedge disclinations. We first use the tools of differential geometry to construct a Riemannian material manifold in which the body is stress-free. This manifold is metric compatible, has zero torsion, but has non-vanishing curvature. The problem then reduces to embedding this manifold in Euclidean 3-space following the procedure of a classical nonlinear elastic problem. We show that this embedding can be elegantly accomplished by using Cartan’s method of moving frames and compute explicitly the residual stress field for various distributions in the case of a neo-Hookean material.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controllable deformations in compressible isotropic implicit elasticity;Zeitschrift für angewandte Mathematik und Physik;2024-08-26

2. Universal deformations and inhomogeneities in isotropic Cauchy elasticity;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07

3. Origin of bent ridge-kink based on disclination relaxation;International Journal of Solids and Structures;2024-07

4. A geometric formulation of Schaefer’s theory of Cosserat solids;Journal of Mathematical Physics;2024-06-01

5. Geometric phases of nonlinear elastic N-rotors via Cartan’s moving frames;Physica D: Nonlinear Phenomena;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3