ResUNet involved generative adversarial network-based topology optimization for design of 2D microstructure with extreme material properties

Author:

Li Jicheng1,Ye Hongling1ORCID,Wei Nan1,Zhang Xingyu1

Affiliation:

1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, P.R. China

Abstract

Topology optimization is one of the most common methods for design of material distribution in mechanical metamaterials, but resulting in expensive computational cost due to iterative simulation of finite element method. In this work, a novel deep learning-based topology optimization method is proposed to design mechanical microstructure efficiently for metamaterials with extreme material properties, such as maximum bulk modulus, maximum shear modulus, or negative Poisson’s ratio. Large numbers of microstructures with various configurations are first simulated by modified solid isotropic material with penalization (SIMP), to construct the microstructure data set. Subsequently, the ResUNet involved generative and adversarial network (ResUNet-GAN) is developed for high-dimensional mapping between optimization parameters and corresponding microstructures to improve the design accuracy of ResUNet. By given optimization parameters, the well-trained ResUNet-GAN is successfully applied to the microstructure design of metamaterials with different optimization objectives under proper configurations. According to the simulation results, the proposed ResUNet-GAN-based topology optimization not only significantly reduces the computational duration for the optimization process, but also improves the structure precise and mechanical performance.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3