Natural frequency analysis of continuously graded carbon nanotube-reinforced cylindrical shells based on third-order shear deformation theory

Author:

Aragh B Sobhani1,Farahani E Borzabadi,Barati AH Nasrollah2

Affiliation:

1. Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran

2. Department of Mechanical Engineering, Aligoudarz Branch, Islamic Azad University, Aligoudarz, Iran

Abstract

Based on the third-order shear deformation theory (TSDT), the investigation of the free vibration response of a continuously graded carbon nanotube-reinforced (CGCNTR) cylindrical shell is presented. The volume fractions of randomly oriented straight single-walled carbon nanotubes are assumed to be graded in the thickness direction. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The Mori–Tanaka scheme as an accurate micromechanics model is used for estimating the homogenized material properties of nanocomposites reinforced with equivalent fibers. The equations of motion and the associated boundary conditions are derived using the Hamilton’s principle based on TSDT. The discretization of the system by means of the Generalized Differential Quadrature Method leads to a standard linear eigenvalue problem. Detailed parametric studies have been carried out to study the impacts of the various types of equivalent fiber distribution, different boundary conditions and geometrical parameters on the vibration characteristics of CGCNTR cylindrical shells. The interesting finding of the present study is that the graded CNT volume fractions with symmetric distribution through the shell thickness have high capabilities to reduce or increase the natural frequency in comparison with uniformly and asymmetric CNT distribution.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3