Dynamic continualization of masonry-like structured materials

Author:

Diana Vito1ORCID,Bacigalupo Andrea1,Gambarotta Luigi1

Affiliation:

1. Department of Civil, Chemical and Environmental Engineering, University of Genova, Genoa, Italy

Abstract

Block-lattice materials featuring periodic planar running-bond tessellation of regular rigid blocks and linear elastic homogeneous isotropic interfaces are considered. The governing equations of the discrete masonry-like Lagrangian model are properly manipulated via the novel enhanced continualization scheme, in such a way as to obtain equivalent integral type non-local continua, whose band structure turns out to be coincident with that of the corresponding discrete models. The formal Taylor series expansion of the integral kernels allows deriving homogeneous generalized micropolar higher-order continuum models, characterized by non-local constitutive and inertial terms. The enhanced continualization exhibits thermodynamic consistency in the definition of the overall non-local constitutive tensors, as well as qualitative agreement and quantitative convergent matching of the complex frequency band structure in the regime of both homogeneous and non-homogeneous Bloch waves. The theoretical findings are effectively validated by studying the dispersion relations and the spatial attenuation properties, as referred to realistic representative cases of masonry-like block-lattice micro-structures.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3