An amended approximation of the non-Gaussian probability distribution function

Author:

Darabi Ehsan1ORCID,Hillgärtner Markus1ORCID,Itskov Mikhail1

Affiliation:

1. Department of Continuum Mechanics, RWTH Aachen University, Aachen, Germany

Abstract

Network models of rubber elasticity are based on the conformational entropy of an idealized chain and mostly motivated by the non-Gaussian statistical theory by Kuhn and Grün. However, the non-Gaussian probability distribution function cannot be expressed in a closed form and requires an approximation. All such approximations applied in the literature demonstrate pronounced inaccuracies in comparison to the analytical solution. The ideal choice of the approximation function depends on a variety of factors, such as the chain parameters or the desired application of the approximation (the probability distribution function itself, the corresponding entropic energy, or the force developed by the chain). In addition, when making a choice regarding the best approximation for a given application, the applied error measure plays a significant role since the approximation that grants, for example, the best maximal relative error is not necessarily the same that provides the best mean absolute error. In the literature, this application-specific evaluation of available approximations is commonly disregarded. In this paper, we evaluate previously proposed approximations on the application-specific basis and develop an approach to derive a family of approximations for the free energy of a polymer chain in a broader range of the number of its chain segments. The analytical method based on the Padé technique delivers an approximation of the non-Gaussian probability distribution function that can be easily tailored depending on the desired application. The proposed approach is capable to provide much stronger predictions in comparison to the Kuhn and Grün model in a wide range of chain segment numbers.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3