Hashin–Shtrikman bounds of periodic linear elastic media with cubic symmetry

Author:

Mejak George1ORCID

Affiliation:

1. Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Abstract

Based on the Hashin–Shtrikman variational principle, novel bounds on the effective shear moduli of a two-phase periodic composite are derived. The composite constituents are assumed to be isotropic, while the microstructure is assumed to exhibit cubic symmetry. A solution of the subsidiary boundary value problem is expressed as a double contraction of a fourth-order cubic tensor with the applied macroscopic strain. The bounds for cubic shear moduli are new, while the bounds for the bulk modulus are equal to the classical ones. The new bounds are verified for composites with the cubic, frame, octet and cubic + octet structures. It is shown that they are nearly attained for the cubic, octet and cubic + octet structures.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3