Nonlinear Elasticity Theory with Discontinuous Internal Variables

Author:

Lazopoulos K. A.1,Ogden R. W.2

Affiliation:

1. Division of Mechanics, Department of Engineering Sciences, National Technical University of Athens, Zografou Campus, Athens 157 73, Greece

2. Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, United Kingdom

Abstract

In this paper, a modified theory of nonlinear elasticity in which the strain energy function depends on discontinuous internal variables is proposed. Specifically, the internal variables are allowed to be discontinuous across one or more surfaces. The objective is to model nonclassical phenomena in which two or more material phases are separated by a surface or surfaces of discontinuity. While in the present theory the internal variables may suffer discontinuities, the deformation itself is smooth, and this distinguishes the theory from that initiated by Ericksen, which involves discontinuities in the deformation gradient. The governing equilibrium equations and jump conditions are derived from a variational principle and then specialized to the case of an incompressible isotropic elastic solid with a single internal variable by application to the equilibrium of the radially symmetric deformation of a thick walled circular cylindrical tube under combined extension and inflation. The governing equations include an equation relating the deformation implicitly to the internal variables. By taking a suitable model for the dependence of the internal variable on the deformation, it is shown that a jump in the internal variable may occur across a circular cylindrical surface concentric with the cylinder. At a critical value of the internal radius, the jump surface is initiated at the inner boundary and then propagates through the material as inflation proceeds, and the two phases, separated by the jump surface, coexist in equilibrium. It is then shown that for the unloading process, the theory allows for the possibility of a residual strain remaining once the pressure is removed, and this aspect of the theory is illustrated by use of a simple material model.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3