Characterization of the material behavior and identification of effective elastic moduli based on molecular dynamics simulations of coarse-grained silica

Author:

Ries Maximilian1ORCID,Bauer Christof1,Weber Felix1ORCID,Steinmann Paul1,Pfaller Sebastian1

Affiliation:

1. Institute of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract

The addition of fillers can significantly improve the mechanical behavior of polymers. The responsible mechanisms at the molecular level can be well assessed by particle-based simulation techniques, such as molecular dynamics. However, the high computational cost of these simulations prevents the study of macroscopic samples. Continuum-based approaches, particularly micromechanics, offer a more efficient alternative but require precise constitutive models for all constituents, which are usually unavailable at these small length scales. In this contribution, we derive a molecular-dynamics-informed constitutive law by employing a characterization strategy introduced in a previous publication. We choose silicon dioxide (silica) as an exemplary filler material used in polymer composites and perform uniaxial and shear deformation tests with molecular dynamics. The material exhibits elastoplastic behavior with a pronounced anisotropy. Based on the pseudo-experimental data, we calibrate an anisotropic elastic constitutive law and reproduce the material response for small strains accurately. The study validates the characterization strategy that facilitates the calibration of constitutive laws from molecular dynamics simulations. Furthermore, the obtained material model for coarse-grained silica forms the basis for future continuum-based investigations of polymer nanocomposites. In general, the presented transition from a fine-scale particle model to a coarse and computationally efficient continuum description adds to the body of knowledge of molecular science as well as the engineering community.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3