A finite-element discretization of some boundary value problems for nonlinear strain-limiting elastic bodies

Author:

Yoon Hyun C.1,Mallikarjunaiah S. M.2ORCID

Affiliation:

1. Department of Mathematics and Statistics, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA Petroleum & Marine Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, Republic of Korea

2. Department of Mathematics and Statistics, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA

Abstract

It is well known that the linearized theory of elasticity admits the logically inconsistent solution of singular strains when applied to certain naive models of fracture while the theory is a first-order approximation to finite elasticity in the asymptotic limit of infinitesimal displacement gradient. Meanwhile, the strain-limiting models, a special subclass of nonlinear implicit constitutive relations, predict uniformly bounded strain in the whole material body including at the strain-concentrator such as a crack tip or reentrant corner. Such a nonlinear approximation cannot be possible within the standard linearization procedure of either Cauchy or Green elasticity. In this work, we examine a finite-element discretization for several boundary value problems to study the state of stress–strain in the solid body of which response is described by a nonlinear strain-limiting theory of elasticity. The problems of notches, oriented cracks, and an interface crack in anti-plane shear are analyzed. The numerical results indicate that the linearized strain remains below a value that can be fixed a priori, therefore, ensuring the validity of the nonlinear model. In addition, we find high stress values in the neighborhood of the crack tip in every example, thereby suggesting that the crack tip acts as a singular energy sink for a stationary crack. We also calculate the stress intensity factor (SIF) in this study. The computed value of SIF in the nonlinear strain-limiting model is corresponding to that of the classical linear model, and thereby providing a tenet for a possible local criterion for fracture. The framework of strain-limiting theories, within which the linearized strain bears a nonlinear relationship with the stress, can provide a rational basis for developing physically meaningful models to study a crack evolution in elastic solids.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3