Compact second-order time-domain perfectly matched layer formulation for elastic wave propagation in two dimensions

Author:

Assi Hisham1,Cobbold Richard S.1

Affiliation:

1. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada

Abstract

A new second-order formulation is obtained for elastic wave propagation in 2D media bounded by a perfectly matched layer (PML). The formulation uses a complex coordinate stretching approach with a two-parameter stretch function. The final system, consisting of just two second-order displacement equations along with four auxiliary equations, is smaller than existing formulations, thereby simplifying the problem and reducing the computational cost. With the help of a plane-wave analysis, the stability of the continuous formulation is examined. It is shown that by increasing the scaling parameter in the stretch function, any existing instability is moved to higher spatial frequencies. Since discrete models cannot resolve frequencies beyond a certain limit, this can lead to significant computational stability improvements. Numerical results are shown to validate our formulation and to illustrate the improved stability that can be achieved with certain anisotropic media that have known issues.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3