A numerical investigation on impulse-induced nonlinear longitudinal waves in pantographic beams

Author:

Turco Emilio1ORCID,Barchiesi Emilio2ORCID,dell’Isola Francesco3

Affiliation:

1. Department of Architecture, Design and Urban planning (DADU), University of Sassari and International Research Center on Mathematics and Mechanics of Complex Systems (M&MOCS), University of L’Aquila, Italy

2. Department of Architecture, Design and Urban planning (DADU), University of Sassari, International Research Center on Mathematics and Mechanics of Complex Systems (M&MOCS), University of L’Aquila, Italy and École Nationale d’Ingénieurs de Brest, ENIB, UMR CNRS 6027, IRDL, Brest, France

3. Department of Civil, Construction–Architectural and Environmental Engineering (DICEAA) and International Research Center on Mathematics and Mechanics of Complex Systems (M&MOCS), University of L’Aquila, Italy

Abstract

This contribution presents the results of a campaign of numerical simulations aimed at better understanding the propagation of longitudinal waves in pantographic beams within the large-deformation regime. Initially, we recall the key features of a Lagrangian discrete spring model, which was introduced in previous works and that was tested extensively as capable of accurately forecasting the mechanical response of structures based on the pantographic motif, both in statics and dynamics. Successively, a stepwise integration scheme used to solve equations of motions is briefly discussed. The key content of the present contribution concerns the thorough presentation of some selected numerical simulations, which focus in particular on the propagation of stretch profiles induced by impulsive loads. The study takes into account different tests, by varying the number of unit cells, i.e., the total length of the system, spring stiffnesses, the shape of the impulse, as well as its properties such as duration and peak amplitude, and boundary conditions. Some conjectures about the form of traveling waves are formulated, to be confirmed by both further numerical simulations and analytical investigations.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3