Wave motion in multi-layered transversely isotropic porous media by the method of potential functions

Author:

Teymouri Hamid1,Khojasteh Ali2ORCID,Rahimian Mohammad1,Pak Ronald Y S3

Affiliation:

1. Department of Civil Engineering, University of Tehran, Tehran, Iran

2. Department of Engineering Science, University of Tehran, Tehran, Iran

3. Department of Civil, Environmental, Architectural Engineering, University of Colorado, Boulder, USA

Abstract

Wave propagation in a multi-layered transversely isotropic porous medium has been considered in this paper, which consists of n parallel layers overlying on a half-space. Potential functions are used to solve elastodynamic differential equations of the poroelastic medium. Time-harmonic excitation is assumed and the procedure of solution is performed in the frequency domain. Generalized reflection and transmission matrices are generated for compressional and shear waves separately. By means of the Hankel transformation method, coupled differential equations are altered to ordinary ones and Riemann surfaces are used to establish the path of integrations. A closed-form solution is described to reach Green’s functions of displacements and stresses. Some special cases of excitations are discussed and verification of the solution is presented. The numerical results of a three-layered medium on a porous half-space are determined and discussed.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3