Abstract
Problems of interface cracks starting from the common corner points of pairs of perfectly glued wedges of different isotropic elastic materials are addressed. It is demonstrated that for a few particular configurations and a restrictive condition imposed on values of elastic constants (corresponding to vanishing of the second Dundurs parameter), the problem of elastic equilibrium may be solved by Khrapkov’s method. These configurations are: (i) the wedges forming a half-plane; (ii) the wedges forming a plane; (iii) one of the wedges being a half-plane. In all cases, the external boundaries are supposed to be free of stresses. By applying Mellin’s transform for all three configurations the problem has been reduced to vector Riemann’s problem, and the matrix coefficient has been factorized for the case of the mentioned restrictive condition. The first configuration, i.e. the problem of an inclined edge crack located along the boundary separating two wedges of different elastic isotropic materials forming a half-plane is considered in more detail. The solution has been obtained for both uniform (corresponding to remote loading) and non-uniform (loading applied at the crack faces) problems. Numerical results are presented and compared with the available results obtained by other authors for particular cases. The obtained solutions appear especially valuable for analysing extreme cases of parameters.
Funder
engineering and physical sciences research council
Subject
Mechanics of Materials,General Materials Science,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献