A reduced mixed finite-element formulation for modeling the viscoelastic response of electro-active polymers at finite deformation

Author:

Bishara Dana1,Jabareen Mahmood1ORCID

Affiliation:

1. Faculty of Civil and Environmental Engineering, Technion - Israel institute of Technology, Haifa, Israel

Abstract

In this work, a parameter identification procedure has been held for characterizing the widely used dielectric elastomer VHB. The calibration procedure has been performed using various experimental data found in previous works including uniaxial and multiaxial tests. Unlike the uniaxial tests, the multiaxial tests yield inhomogeneous deformation fields and, therefore, the finite-element method is adopted to obtain numerical solutions for the multiaxial tests. Here, a numerical scheme has been developed using the reduced mixed finite-element formulation, which eliminates the possible volumetric locking in electro-active polymers and enhances the computational efficiency as the static condensation is circumvented. The objective function, which calculates the discrepancy between the results obtained from the computational model and the measured experimental data, has been formulated taking into account the different types of experiments. The material parameters have been extracted when the objective function reached a minimum value, which is obtained by applying an iterative procedure using the fminsearch in Matlab. Within the extracted parameters and the developed finite-element formulation, number of simulations showing the efficiency of the computational model have been performed.

Funder

Israel Science Foundation

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient large-deformation shell elements for the simulation of electromechanical coupling effects in incompressible dielectric elastomers;Journal of Intelligent Material Systems and Structures;2024-06-16

2. Modeling cracks in viscoelastic materials at finite strains;International Journal for Numerical Methods in Engineering;2023-11-23

3. A numerical framework for the simulation of coupled electromechanical growth;Computer Methods in Applied Mechanics and Engineering;2023-09

4. Finite deformation analysis of electro-active shells;Mechanics of Materials;2023-07

5. Quasi-static crack propagation in soft materials using the material-sink theory;International Journal of Mechanical Sciences;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3