Axially symmetric continuum mechanical model for the oscillon

Author:

Hill James M1ORCID,Spencer Anthony JM2,McCue Scott W3

Affiliation:

1. STEM, University of South Australia, Adelaide, SA, Australia

2. School of Mathematical Sciences, University of Nottingham, Nottingham, UK

3. School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia

Abstract

The oscillon is a highly localized dynamical phenomenon occurring in a thin horizontal layer of granular material, which rests on a rigid plate oscillating in the vertical direction. The geometry is axially symmetric and physically resembles a splash of liquid due to a falling drop, except that it continually perpetuates itself and does not generate a spreading wave, as is the case for a liquid splash. The oscillon moves from “peak” to “crater” and “crater” to “peak” such that the time from “peak” to “peak” or “crater” to “crater” is twice the period of the oscillating plate. The physics of granular phenomena is not properly understood, and there is no continuum mechanical theory of granular materials which is widely accepted as accurately describing their behaviour. Here for a free-flowing (cohesion-less) granular material, under axially symmetric conditions, we present a partial continuum mechanical analysis assuming the Coulomb–Mohr yield function and non-dilatant double-shearing theory. We examine small perturbations superimposed upon a purely vertical vibration, and make the assumption that throughout the motion, the lower surface of the layer remains in contact with the rigid metal plate. We show how the temporal dependence, which decouples from the spatial structure, is governed by Mathieu’s equation for the physically relevant case of the rigid plate oscillating sinusoidally, and therefore stability is determined by certain key parameters. We explore a variety of possible forms for spatial dependence. The present axially symmetric analysis complements that presented by the authors for plane strain conditions, and we find, quite remarkably, that apart from constants, both flows are governed by similar fourth-order systems of ordinary differential equations. This means that for both plane strain and axially symmetry, analogous pattern forming conditions can operate.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3