Accurate fracture analysis of multi-material V-notched Reissner plates under bending or twisting

Author:

Yu Xiong1,Yang Zhenting1,Zhang Qilin1,Tong Zhenzhen2,Zhou Zhenhuan1ORCID,Xu Xinsheng1

Affiliation:

1. State Key Laboratory of Structure Analysis of Industrial Equipment, Department of Engineering Mechanics, International Center for Computational Mechanics, Dalian University of Technology, Dalian, P.R. China

2. College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian, P.R. China

Abstract

An accurate fracture analysis of multi-material V-notched Reissner plates under bending or twisting is performed by a new coupling approach of isogeometric analysis (IGA) and eigenfunction expansion method. In this approach, the overall plate is divided into two regions: a singular region near the notch tip (near field) and a regular region far away from the notch tip (far field). The overall model is discretized by a T-spline-based IGA. Asymptotic solutions of singular stress fields are applied to the near field, and therefore, the large number of fundamental unknowns of control points is reduced into a small set of undetermined coefficients. The unknowns in the far field remain unchanged. Consequently, the computational cost is significantly reduced, and explicit expressions of singular stress components in the vicinity of notch tip are obtained without post processing. Comparisons are presented to demonstrate the accuracy and convergence of the present approach. Effects of key influencing factors on the singularity order and singular items of stresses are investigated also.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3