A novel reduced model for a linearized anisotropic rod with doubly symmetric a cross-section: I. Theory

Author:

Pruchnicki Erick1ORCID,Chen Xiaoyi2ORCID,Dai Hui-Hui3ORCID

Affiliation:

1. Université et Unité de Mécanique de Lille EA 7512, Villeneuve d’Ascq, France

2. Division of Science and Technology, BNU-HKBU United International College, Zhuhai, China

3. Department of Mathematics and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong

Abstract

A novel reduced model is constructed for a linearized anisotropic rod with doubly symmetric cross-section. The derivation starts from the Taylor expansion of the displacement vector and the stress tensor. The goal is to establish rod equations for the leading order displacement and the twist angle of the mean line of the rod in an asymptotically consistent way. Fifteen vector differential equations are derived from the 3D (three-dimensional) governing system, and elaborate manipulations between these equations (including the Fourier series expansion of the lateral traction condition) lead to four scalar rod equations: two bending equations, one twisting equation, and one stretching equation. Also, recursive relations are established between the higher order coefficients and the lower order ones, which eliminate most of the unknowns. Six boundary conditions at each edge are obtained from the 3D virtual work principle, and 1D (one-dimensional) virtual work principle is also developed. The rod model has three features: it adopts no ad hoc assumptions for the displacement form and the scalings of the external loadings; it incorporates the bending, twisting, and stretching effects in one uniform framework; and it satisfies the 3D governing system in a point-wise manner.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3