Homogenized elastic response of random fiber networks based on strain gradient continuum models

Author:

Berkache Kamel1,Deogekar Sai2,Goda Ibrahim3,Picu R Catalin2,Ganghoffer Jean-François4ORCID

Affiliation:

1. Département d’Energétique et de Mécanique des Fluides, Faculté de Physique, USTHB, Alger, Algérie; École Supérieure des Sciences Appliquées d’Alger, Alger, Algérie

2. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

3. LPMT, Université de Haute-Alsace, Mulhouse, France; Department of Industrial Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt

4. LEM3, Université de Lorraine, CNRS, Metz, France

Abstract

The purpose of this work is to develop anisotropic strain gradient linear elastic continuum models for two-dimensional random fiber networks. The constitutive moduli of the strain gradient equivalent continuum are assessed based on the response of the explicit network representation in so-called windows of analysis, in which each fiber is modeled as a beam and the fibers are connected at crossing points with welded joints. The principle of strain energy equivalence based on the extension to the strain gradient of the Hill–Mandel macro homogeneity condition is employed to identify the classical and strain gradient moduli, based on the application of a sequential set of polynomial displacements on windows of analysis of different sizes. The scaling of the first- and second-order moduli with network parameters, such as network density and the ratio of fiber bending to axial stiffness, is determined. We observe a similar dependency of classical and strain gradient moduli on the same network parameters. The internal length scales associated with the gradient coefficients of the constitutive equation are also defined in terms of the network parameters. The strain gradient moduli prove to be size-independent in the affine regime, and they converge toward a size-independent value in the non-affine deformation regime after a rescaling of physical dimensions by the window size. The obtained results show that the strain gradient moduli scale uniformly with the square of the magnitude of the strain gradients applied to the window of analysis.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3