Examining avascular tumour growth dynamics: A variable-order non-local modelling perspective

Author:

Almudarra Mariam Mubarak1,Ramírez-Torres Ariel2ORCID

Affiliation:

1. School of Mathematics & Statistics, University of Glasgow, Glasgow, UK; Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

2. School of Mathematics & Statistics, University of Glasgow, Glasgow, UK

Abstract

This study investigates the growth of an avascular tumour described through the interchange of mass among its constituents and the production of inelastic distortions induced by growth itself. A key contribution of this research examines the role of non-local diffusion arising from the complex and heterogeneous tumour micro-environment. In our context, the non-local diffusion is enhanced by a variable-order fractional operator that incorporates crucial information about regions of limited nutrient availability within the tissue. Our research also focuses on the identification of an evolution law for the growth-induced inelastic distortions recast through the identification of non-conventional forces dual to suitable kinematic descriptors associated with the growth tensor. The establishment of such evolution law stems from examining the dissipation inequality and subsequently determining a posteriori connections between the inelastic distortions and the source/sink terms in the mass balance laws. To gain insights into the dynamics of tumour growth and its response to the proposed modelling framework, we first study how the variables governing the tissue evolution are affected by the introduction of the new growth law. Second, we investigate how regions of limited diffusion within the tumour, encoded into a fractional operator of variable-order, influence its growth.

Publisher

SAGE Publications

Reference120 articles.

1. World Health Organisation (WHO), https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 5 November 2023).

2. How is cancer complex?

3. Cancer: looking for simplicity and finding complexity

4. Cancer Biology

5. The Biology of Cancer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3