Acoustic radiation from a sphere pulsating near an impedance plane using a boundary integral equation method

Author:

Üstündağ Burak1ORCID,Yildizdag M Erden1ORCID,Uğurlu Bahadır1,Ergin Ahmet1ORCID

Affiliation:

1. Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract

In this study, a boundary integral equation method is proposed for investigating acoustic pressure radiation from a sphere pulsating near a free surface or an impedance plane. The half-space and free-space problems are investigated for the acoustic radiation of pulsating sphere. The effects of free surface and impedance boundaries are introduced into the mathematical model by employing three different half-space Green’s functions, respectively. These Green’s functions are derived, respectively, using the single image-source method, multiple equivalent-source method, and complex equivalent-source method. Green’s functions are implemented into the boundary element (BE) formulation. The surface of the pulsating sphere is discretized with linear and quadratic BEs, and the Combined Helmholtz Integral Equation Formulation (CHIEF) is employed to overcome the non-uniqueness problem. Four different case studies are considered for the sphere pulsating near a free surface or an impedance plane. The first case study involves the sphere pulsating near a free surface (perfectly reflective) and the single image-source method is used in the boundary element method (BEM) formulation. In the second case study, the sphere is assumed as pulsating near a perfectly reflecting and perfectly absorbing impedance planes, respectively. The multiple equivalent-source method is employed for the perfectly reflecting plane, but the multiple equivalent-source method and complex equivalent-source methods for the perfectly absorbing plane. The third case study involves a general impedance plane, and all the methods are employed, respectively, in the BE formulation. The final case study assumes a general impedance plane forming a perpendicular incidence and the complex equivalent-source method is used in this particular case. It is observed that there is a very good comparison between the results obtained from all these methods.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of acoustic radiation from a sphere vibrating on the free surface of a finite depth water using a boundary element method;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3