Interaction between two nanoscale elliptical holes with surface tension

Author:

Wang Shuang12,Gao Cun-Fa1,Chen Zeng-Tao2ORCID

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

In this paper, the plane problem of two elliptical nanoscale holes with surface tension is investigated. Firstly, the basic equations are given via the complex variable methods. Then, the stress boundary condition caused by surface tension is derived through the integral-form Gurtin–Murdoch model. The problem is finally solved by the conformal mapping along with the series expansion methods. The results show that the stress field decreases as the two holes become further away from each other. When the distance between the two holes is more than three times the sum of their sizes, the interaction between the two holes can be neglected. In addition, the stress field is greatly influenced by the orientation, aspect ratio and size of the holes. The positions of the maximum hoop stress are also discussed. When the two elliptical holes are put close horizontally, the hoop stress around one hole usually obtain its maximum at the endpoint close to the other hole. However, if one elliptical hole is not horizontal, the hoop stress around it will no longer attain its maximum at the endpoints. Another exception is that when one elliptical hole becomes larger, the hoop stress around the smaller hole would tend to achieve a local minimum at the endpoint close to the larger hole.

Funder

National Natural Science Foundation of China

China Scholarship Council

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3