Riemann Problems for an Elastoplastic Model for Antiplane Shearing With a Nonassociative Flow Rule

Author:

Garaizar F. Xabier,Gordon Michael1

Affiliation:

1. Center for Research in Scientific Computation and Department of Mathematics, North Carolina State University, Raleigh, NC 27695

Abstract

A system of partial differential equations describing antiplane shearing of an elastoplastic material is studied. The constitutive relations for plastic deformation include a nonassociative flow rule and strain hardening. Nonassociativity leads to the equations becoming ill-posed after sufficient strain hardening, which is commonly used as an indication of the formation of shear bands in the material. However, it also results in the existence of regions in stress space where the speed of plastic waves exceeds the speed of elastic waves. It is shown that a consequence of this ordering of wave speeds is that the Riemann problem cannot be solved for certain initial data. A modification of the model, which retains the occurrence of ill-posedness but removes the problem of reverse ordering of wave speeds, is presented.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Reference15 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3