On anholonomic deformation, geometry, and differentiation

Author:

Clayton JD1

Affiliation:

1. RDRL-WMP-B, US Army Research Laboratory, Aberdeen Proving Ground, MD, USA

Abstract

In geometrically nonlinear theories of inelasticity of solids, the deformation gradient is typically split multiplicatively into two (or more terms), none of which need be integrable to a motion or displacement field. Such terms, when not integrable, are termed anholonomic, and can be associated with intermediate configuration(s) of a deformed material element. In this work, aspects of tensor calculus associated with anholonomic deformation are analyzed in general curvilinear coordinates. Various linear connection coefficients for intermediate configurations are posited or derived; of particular interest are those mapped coefficients corresponding to the choice of identical basis vectors in multiple configurations. It is shown that torsion and curvature associated with such mapped coefficients do not necessarily vanish, even though torsion and curvature tensors of the original connections vanish by definition in reference or current configurations. Intermediate connection coefficients defined in this way exhibit vanishing covariant derivatives of corresponding metric tensors, but are time dependent even when reference (current) configuration connections are fixed in time at a given material (spatial) location. Formulae are derived for total covariant derivatives of two- and three-point tensors with one or more components referred to the intermediate configuration. It is shown that in intermediate coordinates, neither the divergence of the curl of a vector field nor the curl of the gradient of a scalar field need always vanish. The balance of linear momentum for a hyperelastic–plastic material is examined in the context of curvilinear intermediate coordinates.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3