Affiliation:
1. School of Mathematics, Cardiff University, Cardiff, UK
2. Mathematical Institute, University of Oxford, Oxford, UK
Abstract
For monodomain nematic elastomers, we construct generalised elastic–nematic constitutive models combining purely elastic and neoclassical-type strain energy densities. Inspired by recent developments in stochastic elasticity, we extend these models to stochastic–elastic–nematic forms, where the model parameters are defined by spatially independent probability density functions at a continuum level. To investigate the behaviour of these systems and demonstrate the effects of the probabilistic parameters, we focus on the classical problem of shear striping in a stretched nematic elastomer for which the solution is given explicitly. We find that, unlike the neoclassical case, where the inhomogeneous deformation occurs within a universal interval that is independent of the elastic modulus, for the elastic–nematic models, the critical interval depends on the material parameters. For the stochastic extension, the bounds of this interval are probabilistic, and the homogeneous and inhomogeneous states compete, in the sense that both have a a given probability to occur. We refer to the inhomogeneous pattern within this interval as ‘likely striping’.
Funder
Engineering and Physical Sciences Research Council
Subject
Mechanics of Materials,General Materials Science,General Mathematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献