A model for residually stressed viscoelastic bodies and its application to some boundary value problems

Author:

Mukherjee Soumya1,Ravindran Parag1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

A model for residually stressed viscoelastic bodies undergoing finite deformations is developed and applied to the study of time-dependent responses of spheres and cylinders to various stress and strain controlled tests. An approach based on the notion of natural configurations is employed. An appropriate free energy function is used, and a suitable dissipation function is adopted to obtain a constitutive model. This constitutive model is applied to the study of different boundary value problems of thick spheres and cylinders. The responses to various strain controlled tests are investigated, which includes the stress-relaxation test and a test for a time-dependent inflation–deflation cycle. Also, the response to creep test and step-stress test in thick viscoelastic spheres is investigated. Furthermore, the stretch-controlled responses of residually stressed viscoelastic cylinders to pure torsion and axial stretch are studied. Pure torsion involves an axial extension or compression known as the Poynting effect. The Poynting effect in residually stressed viscoelastic bodies, which does not appear to be studied in the literature, is investigated in detail here. It is noted that the magnitude of the angle of twist has a significant influence (sometimes involving a change of sign) on the observed Poynting effect.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An intermolecular interaction based constitutive model for non-crystalline phase of solid materials;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-06-07

2. Poynting effect in fluid-saturated poroelastic soft materials in torsion;International Journal of Non-Linear Mechanics;2024-03

3. Representation of stress and free energy for a viscoelastic body from a stressed reference;Journal of the Mechanics and Physics of Solids;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3