Modeling the degeneration of the collagen architecture in a microstructural model of the human cornea

Author:

Pandolfi Anna1ORCID,De Bellis Maria Laura2,Gizzi Alessio3,Vasta Marcello2

Affiliation:

1. Dipartimento di Ingegneria Civile ed Ambientale, Politecnico di Milano, Milano, Italy

2. Università di Chieti-Pescara, Chieti, Italy

3. University of Rome Campus Bio-Medico, Rome, Italy

Abstract

We propose an enriched micromechanical model of the collagenous reinforcement of the eye stromal tissue. As a departure from an over-simplified model proposed a few years back, where collagen and chemical bonds were modeled as linear-elastic trusses, here we describe the chemical bonds by means of a more realistic generalized Lennard-Jones potential. In keeping with the original model, we disregard the multi-layer nature of the cornea and the continuum nature of the filling elastin matrix. The under-constrained locally orthogonal network of collagen fibrils is stabilized by crosslinks that provide the rigidity of the system and confer the ability to sustain the action of the intraocular pressure. In Ariza-Gracia et al., it has been shown that the weakening and the bulging of the cornea due to ectasia can be ascribed to the reduction of the density of the chemical bonds. The introduction of a pseudo-chemical potential supplies a more realistic model: any mechanical, enzymatic, or chemical cause of the degradation of the tissue observed in ectasia can be effectively introduced in a multi-physic potential, disregarding the adoption of phenomenological models. In numerical calculations, the high non-linearity of the model is suitably controlled by adopting a robust explicit solver based on dynamic relaxation.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3