High-order three-scale computational method for elastic behavior analysis and strength prediction of axisymmetric composite structures with multiple spatial scales

Author:

Dong Hao1ORCID,Cui Junzhi2,Nie Yufeng3,Jin Ke4,Guan Xiaofei5,Yang Zihao3

Affiliation:

1. School of Mathematics and Statistics, Xidian University, Xi’an, PR China

2. LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, PR China

3. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, PR China

4. School of Aerospace Science and Technology, Xidian University, Xi’an, PR China

5. School of Mathematical Sciences, Tongji University, Shanghai, PR China

Abstract

A novel high-order three-scale (HOTS) computational method for elastic behavior analysis and strength prediction of axisymmetric composite structures with multiple spatial scales is developed in this paper. The multiple heterogeneities of axisymmetric composite structures we investigated are taken into account by periodic distributions of representative unit cells on the mesoscale and microscale. First, the new micro–meso–macro coupled HOTS computational model for elastic problems of axisymmetric composite structures is established based on multiscale asymptotic analysis, which breaks through the traditional multiscale assumptions and includes three main components. Two classes of mesoscopic and microscopic auxiliary cell functions are constructed on the mesoscale and microscale, respectively. The macroscopic homogenization problems are defined on global axisymmetric structures by twice up-scaling procedures from microscale to mesoscale and then from mesoscale to macroscale. Moreover, the asymptotic HOTS solutions are constructed for approximating multiscale elastic problems of axisymmetric structures and the numerical accuracy analysis of the HOTS solutions is given in detail. Then, the strength prediction formulas for axisymmetric composite structures with multiple spatial scales are presented based on the high-accuracy elastic behavior analysis from the proposed HOTS computational model. Furthermore, the corresponding HOTS numerical algorithm based on the finite element method (FEM) is presented for analyzing the mechanical behaviors and predicting the strength of axisymmetric composite structures with multiple spatial scales in detail. Finally, some numerical examples are reported to verify the feasibility and effectiveness of the proposed HOTS computational method. In this study, a unified three-scale computational framework is offered, which enables the simulation of mechanical behaviors of axisymmetric composite structures with multiple spatial scales.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3