Infinitesimally affine deformations of a hypersurface

Author:

Kadianakis Nikos1,Travlopanos Fotios I2

Affiliation:

1. Department of Mathematics, National Technical University of Athens, Athens, Greece

2. Sofianopoulou 11–13, Athens, Greece

Abstract

Affine deformations serve as basic examples in the continuum mechanics of deformable three-dimensional bodies (usually referred to as homogeneous deformations). They preserve parallelism of straight lines, and are often used as an approximation to general deformations. However, when the deformable body is a membrane, a shell or an interface modeled by a surface, parallelism is defined by the affine connection of this surface. In this work we study the infinitesimally affine time-dependent deformations (motions) of such a continuum, but in a more general context, by considering that it is modeled by a Riemannian hypersurface. First we prove certain equivalent formulas for the variation of the connection of the hypersurface. Some of these formulas are expressed in terms of geometrical quantities, and others in terms of kinematical quantities of the deforming continuum. The latter is achieved by using an adapted version of the polar decomposition theorem, frequently used in continuum mechanics to analyze motion. We also apply our results to special motions like tangential and normal motions. Further, we find necessary and sufficient conditions for this variation to be zero (infinitesimal affine motions), providing insight on the form of these motions and the kind of hypersurfaces that allow such motions. Finally, we give some specific examples of mechanical interest which demonstrate motions that are infinitesimally affine but not infinitesimally isometric.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformation Cloaking in Elastic Plates;Journal of Nonlinear Science;2021-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3