The Cerruti problem in dipolar gradient elasticity

Author:

Anagnostou DS1,Gourgiotis PA2,Georgiadis HG3

Affiliation:

1. Mechanics Division, National Technical University of Athens, Zographou, Greece

2. Department of Mechanical and Structural Engineering, University of Trento, Trento, Italy

3. Mechanics Division, National Technical University of Athens, Zographou GR-15773, Greece

Abstract

The classical three-dimensional Cerruti problem of an isotropic half-space subjected to a concentrated tangential load on its surface is revisited here in the context of dipolar gradient elasticity. This generalized continuum theory encompasses the analytical possibility of size effects, which are absent in the classical theory, and has proven to be very successful in modelling materials with complex microstructure. The dipolar gradient elasticity theory assumes a strain-energy density function, which besides its dependence upon the standard strain terms, depends also on strain gradients. In this way, this theory can be viewed as a first-step extension of classical elasticity. The solution method is based on integral transforms and is exact. Of special importance is the behaviour of the new solution near to the point of application of the load where pathological singularities exist in the classical solution (based on the standard theory). The present results show departure from the ones predicted by the classical elasticity theory. Indeed, continuous and bounded displacements are found at the point of application of the load. Such a behaviour of the displacement field is, of course, more natural than the singular behaviour present in the classical solution.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Reference48 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3