Non-classical theory of electro-thermo-elasticity incorporating local mass displacement and nonlocal heat conduction

Author:

Hrytsyna Olha1ORCID,Tokovyy Yuriy2,Hrytsyna Maryan3

Affiliation:

1. Institute of Construction and Architecture, Slovak Academy of Sciences, Bratislava, Slovakia; Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine

2. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine

3. Institute of Construction and Architecture, Slovak Academy of Sciences, Bratislava, Slovakia

Abstract

A non-classical local gradient theory of nonferromagnetic thermoelastic dielectrics is presented, incorporating both the local mass-displacement process and the heat-flux gradient effect. The process of local mass displacement is related to the changes in material microstructure. The nonlocal heat conduction law is also addressed in the model. Thus, the generalized relationship between the higher-grade heat and entropy fluxes is adopted. The gradient-type constitutive relations and governing equations are derived using the fundamental principles of continuum mechanics, non-equilibrium thermodynamics, and electrodynamics. Due to the contribution of higher-grade flux, the nonlocal law of heat conduction is obtained. The constitutive relations for isotropic materials with the corresponding additional material constants are derived. To illustrate the local gradient theory and to show the electro-thermo-mechanical coupling effect in isotropic materials, a straightforward problem is analytically solved for a layered non-piezoelectric structure under non-uniform temperature distribution. The analytical results reveal that the thermal polarization effect can also be pronounced in isotropic materials. To illustrate the model considering the effect of nonlocal heat conduction, the propagation of spherical thermoelastic harmonic waves in a homogeneous and isotropic elastic medium with non-classical heat conduction law is studied.

Funder

Ministry of Education and Science of the Ukraine

Agentúra na Podporu Výskumu a Vývoja

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3