Affiliation:
1. School of Civil Engineering, University of South China, Hengyang, China
2. Department of Mechanics, Beijing Jiaotong University, Beijing, China
Abstract
Considering the importance of understanding the propagation of transient waves in the piezomagnetic solids, the thermal effect on the transient behavior of a piezomagnetic half-space subjected to dynamic anti-plane load is investigated analytically in this paper. Using one-sided, two-sided Laplace transformation and Cagniard–de Hoop (CH) technique, an efficient and accurate analytical derivation for the solution of the anti-plane displacement, shear stress, magnetic potential, and induction in Laplace domain is presented. The study shows that the thermal stresses developed in x-axis and y-axis directions have significant influence on the transient response of the half-space. The magnetic induction [Formula: see text] increases obviously when the thermal stress is applied in x-axis direction, while it decreases when the thermal stress is applied in y-axis direction. Approaching time of magnetic induction [Formula: see text] and [Formula: see text] will become longer with higher thermal stress in x-axis direction. With the growth of the thermal stress in x-direction, contribution from the electromagnetic–elastic head (EH) wave increases, while the contribution from the shear elastic (SE) wave and the static value of shear stress decrease.
Funder
national natural science foundation of china