Azimuthal Shear of a Transversely Isotropic Elastic Solid

Author:

Kassianidis F.1,Ogden R.W.1,Merodio J.2,Pence T.J.3

Affiliation:

1. Department of Mathematics, University of Glasgow, University Gardens, Glasgow, UK

2. Department of Continuum Mechanics and Structures, E.T.S. Ingenieros Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain

3. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA

Abstract

In this paper we study the problem of (plane strain) azimuthal shear of a circular cylindrical tube of incompressible transversely isotropic elastic material subject to finite deformation. The preferred direction associated with the transverse isotropy lies in the planes normal to the tube axis and is at an angle with the radial direction that depends only on the radius. For a general form of strain-energy function the considered deformation yields simple expressions for the azimuthal shear stress and the associated strong ellipticity condition in terms of the azimuthal shear strain. These apply for a sense of shear that is either “with” or “against” the preferred direction (anticlockwise and clockwise, respectively), so that material line elements locally in the preferred direction either extend or (at least initially) contract, respectively. For some specific strain-energy functions we then examine local loss of uniqueness of the shear stress—strain relationship and failure of ellipticity for the case of contraction and the dependence on the geometry of the preferred direction. In particular, for a reinforced neo-Hookean material, we obtain closed-form solutions that determine the domain of strong ellipticity in terms of the relationship between the shear strain and the angle (in general, a function of the radius) between the tangent to the preferred direction and the undeformed radial direction. It is shown, in particular, that as the magnitude of the applied shear stress increases then, after loss of ellipticity, there are two admissible values for the shear strain at certain radial locations. Absolutely stable deformations involve the lower magnitude value outside a certain radius and the higher magnitude value within this radius. The radius that separates the two values increases with increasing magnitude of the shear stress. The results are illustrated graphically for two specific forms of energy function.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3