On the effective anisotropic elastic properties of porous hydroxyapatite, porous collagen, and cortical bone: A homogenization scheme with percolation threshold concept

Author:

Vu Mai-Ba1,Nguyen-Sy Tuan23

Affiliation:

1. Mien Trung University of Civil Engineering, Phu Yen, Vietnam

2. Division of Construction Computation, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3. Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

The objective of this study is to model the effective anisotropic elastic properties of porous hydroxyapatite, wet collagen, and cortical bone by an advanced homogenization scheme with a percolation threshold concept. The theoretical basis of the anisotropic homogenization theory is first presented. A homogenization scheme with a percolation threshold concept is then introduced and validated against experimental data for porous hydroxyapatite as well as bone after decollagenization. It is also validated on a porous collagen that is a result of the demineralization of bone. Even though aligned collagen fibers are considered, similar values of the elastic stiffnesses [Formula: see text] and [Formula: see text] were found for demineralized bone due to its very high porosity. Finally the proposed method is used to model cortical bone as a mixture of hydroxyapatite mineral and soft organic content that is in turn a mixture of collagen fiber and pores filled by water. Good agreement between modeled and measured data is observed. The model presented herein is simpler than existing multi-scale homogenization schemes in the literature, but its results fit very well with the experimented trends.

Funder

Vietnam National Foundation for Science and Technology Development

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3