On a consistent dynamic finite-strain shell theory and its linearization

Author:

Song Zilong1,Wang Jiong2,Dai Hui-Hui3

Affiliation:

1. Department of Mathematics and Statistics, York University, Toronto, Canada

2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong, China

3. Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong

Abstract

In this paper, a dynamic finite-strain shell theory is derived, which is consistent with the three-dimensional (3-D) Hamilton’s principle with a fourth-order error under general loadings. A series expansion of the position vector about the bottom surface is adopted. By using the bottom traction condition and the 3-D field equations, the recursive relations for the expansion coefficients are successfully obtained. As a result, the top traction condition leads to a vector shell equation for the first coefficient vector, which represents the local momentum-balance of a shell element. Associated weak formulations, in connection with various boundary conditions, are also established. Furthermore, the derived equations are linearized to obtain a novel shell theory for orthotropic materials. The special case of isotropic materials is considered and comparison with the Donnell–Mushtari (D-M) shell theory is made. It can be shown that, to the leading order, the present shell theory agrees with the D-M theory for statics. Thus, the present shell theory actually provides a consistent derivation for the former one without any ad hoc assumptions. To test the validity of the present dynamic shell theory, the free vibration of a circular cylindrical shell is studied. The results for frequencies are compared with those of the 3-D theory and excellent agreements are found. In addition, it turns out that the present shell theory gives better results than the Flügge shell theory (which is known to provide the best frequency results among the first-approximation shell theories).

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A uniformly-valid asymptotic plate theory of growth with numerical implementation;International Journal of Mechanical Sciences;2023-02

2. A uniform framework for the dynamic behavior of linearized anisotropic elastic rods;Mathematics and Mechanics of Solids;2022-06-29

3. In memory of Prof. Hui-Hui Dai;Mathematics and Mechanics of Solids;2022-06-28

4. Asymptotic derivation of refined dynamic equations for a thin elastic annulus;Mathematics and Mechanics of Solids;2020-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3