On the use of the multiple scale method in solving ‘difficult’ bifurcation problems

Author:

Luongo Angelo1

Affiliation:

1. M&MoCS, University of L’Aquila, L’Aquila, Italy

Abstract

Several algorithms consisting in ‘non-standard’ versions of the Multiple Scale Method are illustrated for ‘difficult’ bifurcation problems. Preliminary, the ‘easy’ case of bifurcation from a cluster of distinct eigenvalues is addressed, which requires using integer power expansions, and it leads to bifurcation equations all of the same order. Then, more complex problems are studied. The first class concerns bifurcation from a defective eigenvalue, which calls for using fractional power expansions and fractional time-scales, as well as Jordan or Keldysh chains. The second class regards the interaction between defective and non-defective eigenvalues. This problem also requires fractional powers, but it leads to differential equations which are of a different order for the involved amplitudes. Both autonomous and parametrically excited non-autonomous systems are studied. Moreover, the transition from a codimension-3 to a codimension-2 bifurcation is explained. As a third class of problems, singular systems possessing an evanescent mass, as Nonlinear Energy Sinks, are considered, and both autonomous systems undergoing Hopf bifurcation and non-autonomous systems under external resonant excitation, are studied. The algorithm calls for a suitable combination of the Multiple Scale Method and the Harmonic Balance Method, the latter is applied exclusively to the singular equations. Several applications are shown, to test the effectiveness of the proposed methods. They include discrete and continuous systems, autonomous, parametrically and externally excited systems.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3