Interaction between a generalized screw dislocation in the matrix and an inhomogeneity containing an elliptic hole in piezoelectric–piezomagnetic composite materials

Author:

Peng Xianghua1,Yu Min2ORCID,Yang Yuxuan3

Affiliation:

1. Swan College, Central South University of Forestry and Technology, Changsha, China; Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, China

2. Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, China

3. Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, China

Abstract

The paper deals with the interaction of a generalized screw dislocation and an elliptic inhomogeneity containing a confocal elliptic hole in a magneto-electro-elastic composite material. Exact solutions are derived for the case where the generalized screw dislocation is located in the matrix under a remote anti-plane shear stress field, an in-plane electric field, and a magnetic field. Based on the complex variable method, the complex potentials of both the matrix and the inhomogeneity are obtained in series, and analytic expressions for the generalized stress and strain field, the image force, the generalized stress intensity factor of the blunt crack tip, and the energy release rate are derived explicitly. The presented solutions include some previous solutions, such as pure elastic, piezoelectric, piezomagnetic, and circular inclusions. Typical numerical examples are presented and the influences of the dislocation position, the volume of inhomogeneity, and the elliptic hole on these physical quantities are discussed. The results show that the magneto-electro-elastic coupling effect has a great influence on the image force and the equilibrium position of dislocation, especially when the dislocation approaches the interface; the coupling effect makes the image force on the screw dislocation follow different variation laws in piezoelectric–piezomagnetic composite materials compared with elastic materials.

Funder

the Hunan Province Key Laboratory of Engineering Rheology of Central South University of Forestry and Technology

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3