Quasi-static deformations of biological soft tissue

Author:

Gilchrist MD,Rashid B1,Murphy JG2,Saccomandi G3

Affiliation:

1. School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland

2. Centre for Medical Engineering Research, Dublin City University, Glasnevin, Dublin 9, Ireland

3. Dipartimento di Ingegneria Industriale, Università degli Studi di Perugia, 06125 Perugia, Italy

Abstract

Quasi-static motions are motions for which inertial effects can be neglected, to the first order of approximation. It is crucial to be able to identify the quasi-static regime in order to efficiently formulate constitutive models from standard material characterization test data. A simple non-dimensionalization of the equations of motion for continuous bodies yields non-dimensional parameters which indicate the balance between inertial and material effects. It will be shown that these parameters depend on whether the characterization test is strain- or stress-controlled and on the constitutive model assumed. A rigorous definition of quasi-static behaviour for both strain- and stress-controlled experiments is obtained for elastic solids and a simple form of a viscoelastic solid. Adding a rate dependence to a constitutive model introduces internal time-scales and this complicates the identification of the quasi-static regime. This is especially relevant for biological soft tissue as this tissue is typically modelled as being a non-linearly viscoelastic solid. The results obtained here are applied to some problems in cardiac mechanics and to data obtained from simple shear experiments on porcine brain tissue at high strain rates.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3