Comprehensive description of deformation and fracture of solids as wave dynamics

Author:

Yoshida Sanichiro1

Affiliation:

1. Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA

Abstract

A field theory of deformation and fracture is presented. Applying the principle of local symmetry to the law of elasticity, this theory is capable of describing elastic deformation, plastic deformation, and fracture of solids based on the same theoretical basis. Using the Lagrangian formalism, the theory derives field equations analogous to the Maxwell equations of electrodynamics. The field equations yield wave solutions that represent the spatiotemporal behaviors of the velocity and rotation fields of solids under deformation. The dynamics of elastic deformation and plastic deformation are differentiated by the form of the longitudinal force acting on a unit volume. In the field equations, this longitudinal effect acts as the source term. In the elastic dynamics, the source term represents a restoring (energy-conservative) force proportional to the displacement from the equilibrium, and in the plastic dynamics it represents an energy-dissipative force proportional to the local velocity. Both effects are interpreted as the solid’s reaction to the external load. Fracture is characterized by the final stage of deformation, where the solid loses both energy-conservative and energy-dissipative reaction mechanisms. These behaviors are observed as different forms in the wave characteristics of the dynamics. Elastic deformation is characterized by longitudinal compression waves, while plastic deformation is characterized by transverse decaying waves. In the transitional stage from the elastic to the plastic regime, a solitary wave is generated if a certain condition is satisfied. Experimental observations of solids that exhibit these wave characteristics of the deformation field are presented.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3